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Bulk Diffusivity of Lattice Gases Close to Criticality 
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We consider lattice gases where particles jump at random times constrained by 
hard-core exclusion (simple exclusion process with speed change). The conven- 
tional theory of critical slowing down predicts that close to a critical point the 
bulk diffusivity vanishes as the inverse compressibility. We confu'm this claim by 
proving a strictly positive lower bound for the conductivity. 
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1. INTRODUCTION 

Close to a critical point dynamical processes become sluggish. Such a 
critical slowing down can be inferred already from the most  primitive 
approximation. For  example, if the order parameter m is supposed to 
satisfy O,rn=- V'(m) with V(m)=arn2+brn 4, b > 0 ,  then as a - * 0 +  the 
relaxation to the equilibrium point m = 0 becomes slow. A more demand- 
ing problem is to extract such a slow behavior out of  a microscopic model 
with many degrees of  freedom. Now, the conventional theory (t'2) asserts 
that dynamical processes slow down because close to criticality certain 
thermodynamic susceptibilities diverge. No  extra complications are sup- 
posed to arise from the dynamics itself. In fact, the conventional theory 
turns out to be wrong for an Ising model with spin flip dynamics, at least 
below the upper critical dimension. There is then an independent dynami- 
cal scaling exponent governing the slow decay at To. (3) On  the other 
hand, for a con,served field a renormalization group calculation supports 
the conventional theory. (3'4) There has been considerable numerical effort 
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to verify these predictions (see, e.g., ref. 5). Since for lattice gases close to 
criticality there is slowing down on top of a conservat ion law, Monte  Carlo 
simulations are plagued by substantial  numerical  uncertainties. To  our  
knowledge, the most  extensive Monte  Carlo computa t ion  ~6~ obtains resuIts 
at least consistent with the conventional  theory. 

The aim of our  paper  is to prove bounds on the bulk diffusivity D(p) 
a s  

d _ p ( 1 - p )  x(p) -1 <~O(p)<~d+p(1-p) x(p) -~ (1.1) 

Here p is the density of  the lattice gas, 0 ~< p ~< 1, X(P) is its compressibility, 
and 0 < d_ ~< d+ < ~ are suitable constants  independent of  the density. 
Thus, if X(P)= [ P -  Pc I -r fi > 1, close to the critical density Pc, then 
D(p) vanishes as [p-pc[ ~6-11 for p ~ p c .  This is precisely one of the 
predictions of  the conventional  theory. The diffusion coefficient D(p) has 
previously been proved to be strictly positive only in dimension d = 1. 

Our  paper  is organized as follows: In Section 2 we briefly recall the 
definition of lattice gases, explain in more  detail the claims of the conven- 
tional theory, and define the bulk diffusivity. In Section 3 we establish 
a lower bound on the bulk diffusivity, the upper  bound in (1.I)  being 
trivial. 

2. CONVENTIONAL THEORY AND BULK DIFFUSIVITY 

We consider a lattice gas on a simple hypercubic lattice Z a. Although 
the bound to be established holds in fair generality (see remarks  below), for 
the sake of concreteness and notat ional  simplicity we restrict ourselves to 
the nearest  neighbor case. As standard,  the occupat ion variables are 
denoted by r/(x), ~/(x) = 0, 1 with x e Z d, and a whole particle configuration 
is denoted by r/: 71d--+ {0, 1}. The dynamics is governed by the exchange 
rates c(x, y, rl). We require c(x, y, r/) = 0 unless Ix - y[ = 1 and to be non- 
degenerate in the sense 

0 < c _  <~c(x, y, r/)~<c+ < oo (2.1) 

for Ix - y[ = 1. The rates c(x, y) are assumed to depend on r /on ly  through 
{ q(z): I x -  zl < Ro, l Y -  zt < Ro}, 1 ~< R 0 < ~ ,  to be translation invariant,  
namely c(x, y, rl)= c(x+a, y+a,  z,r/) with ra the shift by a, and to be 
invariant under lattice rotations. The generator  for the dynamics is then 
given by 

s = ~ c(x, y, r / ) [ f (q  xy) - f ( q ) ]  (2.2) 
<x,y> 
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acting on local functions f .  Here (x ,  y )  denotes a pair of nearest neighbors 
and 

r/(y) if z = x 

~lXY(z) = ~q(x), if z = y 
! 
~q(z) if z ~ x , y  

generates the Markov semigroup exp[.Lat] on C({0, 1} z~) and there 
exists a corresponding stochastic jump process q,; see ref. 7 for details. 

We require our dynamics to be reversible. For this purpose we define 
the energy 

H ( q ) = - f l  ~ q(x)q(y) (2.3) 
<x,y> 

fl > 0 is an attractive and fl < 0 a repulsive lattice gas. For  a bond (x, y) Iet 
ZlxyH(q)=H(rlxY)-H(~l) be the energy difference. We impose then the 
condition 

c(x, y, q) = c(x, y, qXY)e-'~xYH(q) (2.4) 

In particular, Eq. (2.4) implies that the set of canonical Gibbs measures 
with the nearest neighbor potential JL~,.,,)= -fl~l(x)q(y) is invariant and 
reversible under ~.(8) We denote a translation-invariant (not necessarily 
extreme) canonical Gibbs measure by/~p and its expectations by ( . ) p ,  
where the subscript p labels the average density, (q(x))p = p. The stochastic 
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Fig. I. Phase diagram for a lattice gas with density p and attractive (fl~> 0), resp. repulsive 
(fl ~< 0), nearest neighbor interaction (not to scale). 
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process q,, t E R, with initial measure/~p, is space-time stationary. Expecta- 
tions with respect to this process are denoted by E p. 

The Gibbs measures will play a prominent role and it might be useful 
to first describe their phase diagram (for d~> 2) as presented in Fig. 1. 

We plot the average density against fl (not to scale). In region I there 
is a unique Gibbs measure. In region II, we have two extremal Gibbs 
measures which transform into each other by a unit shift. Their typical con- 
figurations have a checkerboard pattern. The shaded regions III and IV 
correspond to mixtures of the Gibbs measures living at the boundary 
points of the density interval with fl fixed. Here (tic, 1/2) is the critical 
point in the attractive case. For - f l ,  < f l  <~ - t i c ,  there is a line of critical 
points which terminates in two critical endpoints. (9" ~0) Only some parts of 
the phase diagram have been established mathematically, m-~3~ It was 
proved that there is no region IV in dimension d =  2. (~s) 

We define the static compressibility by 

X(P) = ~ (<r/(x) ~/(0)>p-p2) (2.5) 
x ~ Z  d 

for p in regions I and II. For f l= f lc ,  X(P) diverges as p ~ 1/2. Similarly, for 
- f l , < f l < - t i c  and d = 2 ,  3, X(P) diverges as p approaches the line of 
critical points. 

Our real interest is the dynamics. The most basic property is the 
spreading of a density disturbance in equilibrium. As a quantitative 
measure one adopts the bulk diffusivity D. Since our lattice gas is isotropic 
by assumption, D is a scalar and can be defined through the normalized 
second moment as 

D = lim Ix-1 ~ x2[EP(q,(x) r/o(0))--p2] -x-'a (2.6) 
, ~ o~ 2dt x ~ za 

If/~p satisfies an exponential mixing condition, then the limit (2.6) exists 
and o is given through the variational formula (~4) 

o - - m f -  ~ c(O, ey) (e] .e j ) ( r l (O)- -r l (e j ) )+D % y" rxG (2.7) 
G 2 j =  1 x ~ Z a  p 

The infimum is over all local functions G. Here ej is the unit vector along 
the positive j axis and the exchange operator is defined by 

Oxyf(~l) =f(~T "y) - f(r/) 

Note that the sum over Z a contains only a finite number of nonzero terms. 
Physically a has the meaning of a conductivity, i.e., if the exchange rates 
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are slightly biased along the 1 axis, then a steady-state current is induced 
which turns out to be proportional to tr. (~4) From now on, we regard 
Eq. (2.7) as the definition of a. 

Taking G = 0 in (2.7) yields the upper bound 

a<~ c(p)d+ (2.8) 

with d+ = c+/2 and c(p) = ((~/(0) - r/(e]))2)p. The conventional theory 
postulates that a remains strictly positive close to a critical point. By (2.6) 
this would imply that D(p)  must vanish as Z(P) -]  for p --* Pc. At first sight 
this claim looks rather innocent. However, along with it goes a prediction 
on the scaling close to Pc, as we explain now. We define the structure 
function 

~(k, t) = ~ eik'~[ EP(rl,(X) r/o(0))--p2] 
x c Z  d 

(2.9) 

with p in regions I and II. The conventional theory argues that for small 
k and large t 

~(k, t) ~ g(k, 0) exp[ - a k  2 Itl/~(k, 0)] (2.10) 

Away from criticality, z = l i m k _ o ~ ( k ,  0) and we recover the standard 
diffusive spreading of a density disturbance with diffusion coefficient 
D = a/X. However, at criticality ~(k, 0 ) 2  Co Ik1-2+" for k ~ O. I f  a does not 
vanish, then at the critical point 

~(k, t) ~ Co Ik1-2+, exp[ - (a /Co)  Ikl 4-"  Itl] (2.11) 

The scaling form (2.11) is somewhat remote from rigorous analysis. 
Our goal here is more modest. 

T h e o r e m  1. Let A be a box with periodic boundary conditions. 
Let /~p.A be the Gibbs measure Z -~ exp[fl~,<x.y>,~,,y~A r/(x) r/(y)], con- 
strained to the set { r/e { 0, 1 } A: [ p I AI ] = Zx~A ~/(x)}, 0 < p < I, where [ .  ] 
denotes the integer part and IAI is the number of sites in A. Let a be 
defined by the variational form (2.7) with/zp any weak limit point of the 
sequence/~p, ,~, IAI--' oo. There exists then a constant d_ > 0 such that 

c ( p ) d _  <~ a (2.12) 

with c(p) = ((r/(0) - r l (e] )  )2) p. 

Remarks.  1. In the context of Ginzburg-Landau models, Theorem 1 
can easily be proved using the Schwartz inequality. (~6) 
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2. The bound d_ is fairly explicit [cf. Eqs. (3.1), (3.10)], but not 
too precise. It  basically reflects that at low temperature the time scale for 
diffusion increases as exp(2d IPl). 

3. X(p)=p as p ~ 0  and X ( p ) = l - p  for p ~ l .  c(p) has the same 
limit behavior. Therefore D(p) tends to a nonzero value as p --* 0, p -* 1. 

4. The proof of Theorem 1 goes through whenever the potential for 
the Gibbs measure and the exchange rates are of finite range. 

5. Let fl>flc. Then in region III  we have p = 2 p _ + ( 1 - 2 ) p + ,  
0 < 2 < 1. Correspondingly 

/zp = 2/2p_ + (1 --),)/.t#+, a (p)  = 2~r(p_) + (1 -- 2) cr(p+) 

On the other hand, density fluctuations are macroscopic (proportional to 
IAI) and therefore X(P)= ~ for p_  < p  < p + .  Since X(p) -] jumps from a 
nonzero value to zero at p+ and p_,  D(p) is bounded away from zero for 
0~<p~<p_ or p+~<p~<l  and vanishes for p _ < p < p §  The same argu- 
ment applies to region IV. Thus in the shaded regions we have D(p)= O. 
(In the context of Ginzburg-Landau models Rezakhanlou (]5) proves that 
this extension into the two phase region is indeed the correct one.) 

6. By the spectral representation and Jensen inequality one has 
the lower bound ~(k, t )>~(k ,  0)exp[ - -Oo k2 Itl/~(k, 0)]; compare with 
Eq. (2.10). Here a0~>a, and go is given by taking G = 0  in (2.7). 

A d d e n d u m .  Although somewhat off the main track, the reader 
might be curious to know how D(p) vanishes as P ~ P c  according to 
current knowledge. To facilitate comparison with the literature, we use 
standard symbols for the critical exponents. In d =  2 most of them come 
from the Onsager solution. Above the upper critical dimension one has 
mean-field values. In between one has a variety of approximate methods. 
Three cases have to be distinguished. (i) fl=flc, Pc = 1/2. The order 
parameter field and the conserved field agree. This is known as Model B 
in critical dynamics. The scaling form for the structure function is written 
as [ k l - 2 + " e x p ( - l k l  -" Itl) with z = 4 - q = 2 + ( 2 - ~ / ) .  (ii) - f l , < f l <  - t i c ,  
Pc = Pc(fl). The order parameter field is the staggered density which differs 
from the conserved field. This is known as Model C in critical dynamics. The 
scaling form for the structure function is written as Ikl-=/Vexp(-Ikl - Itl) 
with z = 2  +o~/v. (iii) f l =  - f l , ,  p = p , .  This is a tricritical point. The nota- 
tion is as in (ii) with index t. 

ad (i): One has D(p)_~lp-1/2[  ~-~ with 6 - 1 = 1 4  for d = 2 ,  
6 - 1 g 3.8 for d = 3, and ~ - 1 = 2 for d I> 4. Also q = 1/4 for d = 2, r /~  0.03 
for d = 3, and q = 0 for d ~> 4. 
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ad (ii): fl~(p) is parabolic close to p = l / 2 .  One has D(p)-~  
I p - p ~ l  "/(~-') with D vanishing as an inverse logarithm in d = 2 ,  
a/( 1 - ~) ~ 0.12 for d = 3, and D bounded for d~> 4. At fl = - fl~, D remains 
bounded. The structure function diverges logarithmically for d = 2, diverges 
as Ikl -~ for d = 3 ,  and remains bounded for d>~4.19} 

ad (iii): One has D(p)  ~ [p - p, I ~ t / ( l  --  ~') with ~,/( 1 - ~,) = 8 for d = 2 
and ~,/(1 - c q ) =  1 for d>~3. ~9) 

3. A LOWER BOUND 

We prove Theorem 1. Let A = [0, 2 / ] a t  Z a with l >  0 and integer. We 
make out of  A a t o r u s b y c o n s i d e r i n g (  .... 2 / + 1  .... ) a n d (  .... 0,... ) as nearest 
neighbors (=per iod ic  boundary  conditions). Let l > R  o. Then c(x, y) is 
defined for every bond on the torus A. Let ( . ) . 4  denote expectation with 
respect to the Gibbs measure Z - ~ e  - n  on the torus A constrained to the set 
{,7~ {0, 1}A: Z.,-~,I r / (x)=  [ p  [A[]}. We write . x '= (x t , x •  where Xl ~7 / i s  
along the 1 axis and x .  ~ 7/a-I is or thogonal  to the 1 axis. 

We first prove a lemma which states that long-range jumps can be 
replaced by short-range jumps. This lemma is well known and can be 
proved with standard method if the inverse temperature is fl = 0, namely 
for the identical independent random variables. In ref. 17 this lemma was 
extended to the independent but not necessary identical case. The method 
we employ here uses idea related to ref. 17. 

k e m m a  2. For  every function u on {0, 1} 141 we have 

1 2 z - l  
~([D(o,o)f21, o)U]2)A~Co E ( [ D  ,,o) y+l.0)U]2).,l (3.1) 

.),=0 

with Co = (2e4al/sl) 2a+'-. 

Proof. Let A = { (0, 0), (2, O) ..... (21, 0)} c A. For  notational simplicity 
we label these lattice sites b y j  = 0 ..... /. We condition on pl c = { r/(x) [ x ~ A \A }. 
Because H is nearest neighbor, the conditional measure is of the form 

�9 c 

PJ(q(J)[v" h ~(j), 
j =  j = .  / 

Expectations with respect to this measure are denoted by ( . ) , ic .  The 
function h ensures the global constraint on the density and the Gibbs factor 
reads 

pj(rl(j)[q c) = (exp[ - r/(j) Ej(~f)]  + exp{ - [ r/(j) - 1 ] Ej(rf)} ) -1 
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where Ej takes only values in {0, fl ..... fl2d}. Accordingly we part i t ion A 
into the 2 d +  1 disjoint sets A,.= { j e A :  Ej=flr},  r = 0 ,  1 ..... 2d. The basic 
idea is to perform exchanges first only within A 0, then within A~, etc. 

We start  with Ao and label A o =  { y / j =  1 ..... n}, Yj<Yj+I,  [Ao[ = n .  
We also set Yo = 0 and y , +  1 = / ,  provided y,, < L Let TxyU(tl) = u(r/"-"). Then 

Tot = 7".1, 0 y ... Ty,, 3',,+1 Ty,,_, y,,... Tvo y, 

If either y~ = 0  or y , = l ,  then the corresponding factors (T,,oy ' or T~.o:,,,§ 
are omitted. We write the telescoping sum 

Dotu=Tyoy ...(TyoyU-U)+ Tyo,, ...(T~,.yU-U)+ . . .  +(Tyoy, U--U ) 

(3.2) 

Now 

(Ty:j+,f) 2 = Ty:j+,f  2 and (Tyj.vj+,f),: = ( f ) , c  

provided 1 ~< j ~< n -  1. For  the endpoints  we use 

(Tyoy I If l>r162 (Ty, y,,+, I f l )r162 

Then, using (3.2) and Schwarz inequality, we arrive at 

l-l((Dotu)2)r 4alal ~ ( y j + l - y y )  -I ( (D~yy+ lu )2 ) r  (3.3) 
j = 0  

If  either Yl = 0 or  y ,  = / ,  then the corresponding summands  in (3.3) have to 
be omitted. Note  that  terms on the right-hand side of  (3.3) are normalized 
by the j ump  length just as on the left. Thus whenever y j + ~ - y j >  1 we may  
iterate our procedure for each isolated interval separately, now employing 
the subset A I instead of Ao, etc. Then 

I - - I  

l-l((Oo/u)2),:<~(2e4al/~l) 2d+l ~_, <(Oj,  j+llI)2>tl,  �9 (3.4) 
j=o 

We average over r/c and use that  

( (Dx,  x + 2elll)2> A ~ 4e4dl#l[ ( (Dx.x +e,U)2) a + ( (Dx +et.x + 2e, U)2) A] 

Inserting this bound in Eq. (3.4) yields (3.1). I 

Proof of  Theorem 1. We define 

W =  ~ [1 +exp(-A~o,x~)(zt, x,)H)][q(O,x• x . ) ]  (3.5) 
x j_ ~ [0 ,  21] d -  1 
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and 

LP = ~* c(x, y)Dx, y (3.6) 
<x,y> 

x , y ~ H  

~ *  means that we omit all bonds in A with endpoints (2/, x . ) ,  (0, x j_) and 
correspondingly for the other coordinate axes. Clearly, for any h we have 
( W h ( Z ~ A  ~/(x)))A = 0. Thus W is orthogonal to the zero subspace of 
and 

( IV( _&v) - ,  14:) A =sup  {2( W u ) , -  ~(u)} (3.7) 
u 

where 

~ ( u )  = 1/2 )-'* 
<x,y> 
x, y e A  

( c(x, y, r/)[D~yu]2)a 

is the Dirichlet form for ~ .  We set u = ~u* with ct e • and 

u * =  ~, (e,.x)~l(X)+ ~ z~G 
x e A  -',r 

Here G is a function of finite range R, l > R, and zx is considered as a shift 
on the torus A. To compute the two terms in Eq. (3.7) we use the transla- 
tion invariance (mod A) of ( - ) A .  We then obtain 

( w ( - ~ ) - ~  w)A 

>~sup {(2l+ 1) a- ]  2l[ - 2 o ~ r -  2o~2aA(G)] + 2a),(G)} (3.8) 

with 

r =  ((r/(O, O ) -  r/(21, O))2)A 

y(G) = ~. ( Wr~G)A 
x~A 1,( { 

aA(G)=~j~=, c(O, ej) (e,.e:)[~l(O)-tl(ej)?+Doe,~rxG A 

Taking the supremum over or yields 

aA(G) >i �89 1)a-l 21[z-- (2 l+ 1)-a+ l (2l)-1 y(G)]2 
x ( w ( - . ~ )  -1 w ) ~  1 (3.9) 
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Thus 

and 

We return to Eq. (3.7). By the Schwarz inequality and Lemma 2 

2 l( Wu).,[ = 2  I ~. ( [ t t ( r l ( ~ 1 7 7  
I x• ~ EO, 21] a- I 

x [q(O, x •  r/(2/, x . ) ]  ).,, 

~< ~ {(Co2/) -I <[U(rl~~ 
x• ~ [0, 2/] '/-I 

+ 2c0l < [q(0, x• -- q(2/, x•  } 

~< ~(u)  + Co(2/+ 1 )a- l 21~ 

(W(-Sg)  -1 W).~ <<.Co(21+ 1) a-1 21r 

1 _1 [ r -  (2 /+ 1) - d + l  2/- ly(G)]  2 
a..,(G) >~Co r (3.10) 

We now take a sequence o f / ~  co such that PA --+ lit, weakly. It follows 
that [7(G)[ ~<const./'t-~, since only those terms contribute to the sum 
where the support of rxG overlaps {x: x~ =0 ,  xl =2l}. Hence the right- 
hand side of (3.10) converges to c(p)/2Co with c given in Theorem 1. Since 
a.~(G) is the expectation of a fixed local function, it converges to a(G), the 
expression inside the infimum of (2.7). Taking the infimum over G yields 
the lower bound (2.12). I 
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